Temperature-Dependent Sound Absorption Characteristics of Perforated Porous Metamaterials

Authors

  • Xiaozhen Li State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China Author
  • Xiaobing Cai State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China Author

Keywords:

Porous material, Perforation, Sound absorption, Temperature effect

Abstract

Recent studies have demonstrated that sound absorption performance can be improved by constructing macroscopic perforations on a porous material matrix. In this paper, the temperature-dependent sound absorption characteristics of three different perforated porous materials (PPMs) with cylindrical (C-PPM), normal conical (NC-PPM) and reverse conical (RC-PPM) perforations are comparatively studied. We used a double porosity theoretical model to study the high-temperature sound absorption of these PPMs and validated it by numerical simulations. The sound absorption mechanism and temperature effect are revealed by the numerical distributions of sound pressure, sound energy dissipation density and sound intensity flow. The results show that the PPMs exhibit better sound absorption than porous material matrix (PMM), especially at low frequencies. This is attributed to the pressure diffusion effect of PPMs, and this effect is enhanced by high temperatures. Furthermore, the three PPMs have sound absorption peaks in different frequency ranges, but high temperatures delay their appearance. Finally, we discussed the effects of perforated shape, perforated size and material properties on sound absorption and identified their optimal values.

References

D. Zhao, X. Li, A review of acoustic dampers applied to combustion chambers in aerospace industry, Progress in Aerospace Sciences, 74 (2015) 114-130.

https://doi.org/10.1016/j.paerosci.2014.12.003

L. Cao, Q. Fu, Y. Si, B. Ding, J. Yu, Porous materials for sound absorption, Composites Communications, 10 (2018) 25-35.

https://doi.org/10.1016/j.coco.2018.05.001

F. Sun, H. Chen, J. Wu, K. Feng, Sound absorbing characteristics of fibrous metal materials at high temperatures, Applied Acoustics, 71 (2010) 221-235.

https://doi.org/10.1016/j.apacoust.2009.09.001

J. Hui Wu, Z.P. Hu, H. Zhou, Sound absorbing property of porous metal materials with high temperature and high sound pressure by turbulence analogy, Journal of Applied Physics, 113 (2013).

https://doi.org/10.1063/1.4804951

S. Ren, F. Xin, T.J. Lu, C. Zhang, A semi-analytical model for the influence of temperature on sound propagation in sintered metal fiber materials, Materials & Design, 134 (2017) 513-522.

https://doi.org/10.1016/j.matdes.2017.09.007

M.J. Cops, J.G. McDaniel, E.A. Magliula, D.J. Bamford, J. Bliefnick, Measurement and analysis of sound absorption by a composite foam, Applied Acoustics, 160 (2020) 107138.

https://doi.org/10.1016/j.apacoust.2019.107138

D. Cuiyun, C. Guang, X. Xinbang, L. Peisheng, Sound absorption characteristics of a high-temperature sintering porous ceramic material, Applied Acoustics, 73 (2012) 865-871.

https://doi.org/10.1016/j.apacoust.2012.01.004

X. Dong, Q. An, S. Zhang, H. Yu, M. Wang, Porous ceramics based on high-thermal-stability Al2O3–ZrO2 nanofibers for thermal insulation and sound absorption applications, Ceramics International, 49 (2023) 31035-31045.

https://doi.org/10.1016/j.ceramint.2023.07.048

J. Chen, P. Liu, J. Sun, Sound absorption performance of a lightweight ceramic foam, Ceramics International, 46 (2020) 22699-22708.

https://doi.org/10.1016/j.ceramint.2020.06.033

M. Carlesso, R. Giacomelli, S. Günther, D. Koch, S. Kroll, S. Odenbach, K. Rezwan, Near‐net‐shaped porous ceramics for potential sound absorption applications at high temperatures, Journal of the American Ceramic Society, 96 (2013) 710-718.

https://doi.org/10.1111/jace.12160

Z. Li, Z. Wang, Z. Guo, X. Wang, X. Liang, Ultra-broadband sound absorption of a hierarchical acoustic metamaterial at high temperatures, Applied Physics Letters, 118 (2021).

https://doi.org/10.1063/5.0044656

Z. Guo, Z. Li, K. Zeng, X. Lu, J. Ye, Z. Wang, Hierarchical-porous acoustic metamaterials: A synergic approach to enhance broadband sound absorption, Materials & Design, 241 (2024) 112943.

https://doi.org/10.1016/j.matdes.2024.112943

X. Wang, R. Qin, J. Lu, M. Huang, X. Zhang, B. Chen, Laser additive manufacturing of hierarchical multifunctional chiral metamaterial with distinguished damage-resistance and low-frequency broadband sound-absorption capabilities, Materials & Design, 238 (2024) 112659.

https://doi.org/10.1016/j.matdes.2024.112659

M. Yang, Z. Chen, L. Yang, Y. Ding, X. Chen, M. Li, Q. Wu, T. Liu, Hierarchically porous networks structure based on flexible SiO2 nanofibrous aerogel with excellent low frequency noise absorption, Ceramics International, 49 (2023) 301-308.

https://doi.org/10.1016/j.ceramint.2022.08.344

C. Dong, Z. Liu, R. Pierce, X. Liu, X. Yi, Sound absorption performance of a micro perforated sandwich panel with honeycomb-hierarchical pore structure core, Applied Acoustics, 203 (2023) 109200.

https://doi.org/10.1016/j.apacoust.2022.109200

L. Shen, H. Zhang, Y. Lei, Y. Chen, M. Liang, H. Zou, Hierarchical pore structure based on cellulose nanofiber/melamine composite foam with enhanced sound absorption performance, Carbohydrate Polymers, 255 (2021) 117405.

https://doi.org/10.1016/j.carbpol.2020.117405

Z. Mei, Y. Lyu, X. Li, X. Cheng, J. Yang, Parallel-coupled hierarchical and reconfigurable structure for broadband sound absorption, Applied Acoustics, 221 (2024) 109990.

https://doi.org/10.1016/j.apacoust.2024.109990

Y. Tang, F. Xin, T.J. Lu, Sound absorption of micro-perforated sandwich panel with honeycomb-corrugation hybrid core at high temperatures, Composite Structures, 226 (2019) 111285.

https://doi.org/10.1016/j.compstruct.2019.111285

P. Zhang, Z. Li, B. Liu, Y. Zhou, M. Zhao, G. Sun, S. Pei, X. Kong, P. Bai, Sound absorption performance of micro-perforated plate sandwich structure based on triply periodic minimal surface, Journal of Materials Research and Technology, 27 (2023) 386-400.

https://doi.org/10.1016/j.jmrt.2023.09.237

Z. Li, Y. Zhou, X. Kong, P. Zhang, S. Pei, L. Ge, Y. Nie, B. Liu, Sound absorption performance of a micro-perforated plate sandwich structure based on selective laser melting, Virtual and Physical Prototyping, 19 (2024) e2321607.

https://doi.org/10.1080/17452759.2024.2321607

J. Huang, J. Wang, T. Ma, H. Wei, S. Zhang, G. Wang, L. Wang, Q. Wang, W. Zhou, Z. Zhang, Composite structure with porous material and parallel resonators for broadband sound absorption at low-to-mid frequencies, Applied Acoustics, 225 (2024) 110193.

https://doi.org/10.1016/j.apacoust.2024.110193

D. Wang, Y. Xiao, S. Wang, Z. Huang, J. Wen, Ultra-broadband sound-absorbing metastructure with Helmholtz resonator and porous material modulation crown, Materials & Design, 246 (2024) 113351.

https://doi.org/10.1016/j.matdes.2024.113351

J.-P. Groby, C. Lagarrigue, B. Brouard, O. Dazel, V. Tournat, B. Nennig, Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators, The Journal of the Acoustical Society of America, 137 (2015) 273-280.

https://doi.org/10.1121/1.4904534

Y. Li, Y. Lin, S. Yao, C. Shi, Low-frequency broadband sound absorption of the metastructure with extended tube resonators and porous materials, Applied Acoustics, 217 (2024) 109827.

https://doi.org/10.1016/j.apacoust.2023.109827

X.-F. Zhu, S.-K. Lau, Z. Lu, W. Jeon, Broadband low-frequency sound absorption by periodic metamaterial resonators embedded in a porous layer, Journal of Sound and Vibration, 461 (2019) 114922.

https://doi.org/10.1016/j.jsv.2019.114922

G. Jin, K. Shi, T. Ye, J. Zhou, Y. Yin, Sound absorption behaviors of metamaterials with periodic multi-resonator and voids in water, Applied Acoustics, 166 (2020) 107351.

https://doi.org/10.1016/j.apacoust.2020.107351

H. Zhang, Y. Wang, H. Zhao, K. Lu, D. Yu, J. Wen, Accelerated topological design of metaporous materials of broadband sound absorption performance by generative adversarial networks, Materials & Design, 207 (2021) 109855.

https://doi.org/10.1016/j.matdes.2021.109855

Z. Xiao, P. Gao, D. Wang, X. He, Y. Qu, L. Wu, Accelerated design of low-frequency broadband sound absorber with deep learning approach, Mechanical Systems and Signal Processing, 211 (2024) 111228.

https://doi.org/10.1016/j.ymssp.2024.111228

X. Liu, F. Xin, C. Zhang, High-temperature effect on the sound absorption of cylindrically perforated porous materials, Journal of Applied Physics, 130 (2021).

https://doi.org/10.1063/5.0050217

W. Zhang, X. Liu, F. Xin, Sound absorption performance of helically perforated porous metamaterials at high temperature, Materials & Design, 225 (2023) 111437.

https://doi.org/10.1016/j.matdes.2022.111437

W. Zhang, X. Liu, F. Xin, Normal incidence sound absorption of an acoustic labyrinthine metal-fibers-based porous metamaterial at high temperature, International Journal of Mechanical Sciences, 237 (2023) 107821.

https://doi.org/10.1016/j.ijmecsci.2022.107821

X. Olny, C. Boutin, Acoustic wave propagation in double porosity media, The Journal of the Acoustical Society of America, 114 (2003) 73-89.

https://doi.org/10.1121/1.1534607

D.L. Johnson, J. Koplik, R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, Journal of fluid mechanics, 176 (1987) 379-402.

https://doi.org/10.1017/S0022112087000727

Y. Champoux, J.F. Allard, Dynamic tortuosity and bulk modulus in air‐saturated porous media, Journal of applied physics, 70 (1991) 1975-1979.

https://doi.org/10.1063/1.349482

F.C. Sgard, X. Olny, N. Atalla, F. Castel, On the use of perforations to improve the sound absorption of porous materials, Applied acoustics, 66 (2005) 625-651.

https://doi.org/10.1016/j.apacoust.2004.09.008

X. Liu, X. Ma, C. Yu, F. Xin, Sound absorption of porous materials perforated with holes having gradually varying radii, Aerospace Science and Technology, 120 (2022) 107229.

https://doi.org/10.1016/j.ast.2021.107229

X. Liu, C. Yu, F. Xin, Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption, Composite Structures, 263 (2021) 113647.

https://doi.org/10.1016/j.compstruct.2021.113647

X. Liu, M. Liu, F. Xin, Sound absorption of a perforated panel backed with perforated porous material: Energy dissipation of Helmholtz resonator cavity, Mechanical Systems and Signal Processing, 185 (2023) 109762.

https://doi.org/10.1016/j.ymssp.2022.109762

D. Lee, Y. Kwon, Estimation of the absorption performance of multiple layer perforated panel systems by transfer matrix method, Journal of sound and vibration, 278 (2004) 847-860.

https://doi.org/10.1016/j.jsv.2003.10.017

W. Xu, D. Yu, J. Wen, Simple meta-structure that can achieve the quasi-perfect absorption throughout a frequency range of 200–500 Hz at 350° C, Applied Physics Express, 13 (2020) 047001.

https://doi.org/10.35848/1882-0786/ab7bc7

D. Christie, Measurement of the acoustic properties of a sound absorbing material at high temperatures, Journal of Sound and Vibration, 46 (1976) 347-355.

https://doi.org/10.1016/0022-460X(76)90859-2

Q. Liu, X. Liu, C. Zhang, F. Xin, High-temperature and low-frequency acoustic energy absorption by a novel porous metamaterial structure, Acta Mechanica Solida Sinica, 34 (2021) 872-883.

https://doi.org/10.1007/s10338-021-00253-9

X. Cai, J. Yang, G. Hu, T. Lu, Sound absorption by acoustic microlattice with optimized pore configuration, The Journal of the Acoustical Society of America, 144 (2018) EL138-EL143.

https://doi.org/10.1121/1.5051526

Downloads

Published

2025-11-05

Issue

Section

Articles